
FDD, LSD
Elizabeth Varghese m



 Feature-Driven Development (FDD)

 FDD is a client-centric, architecture-centric, and pragmatic 

software process

 FDD was first introduced to the world in 1999 via the book Java 

Modeling In Color with UML

 How is FDD Different from Scrum?

 “During FDD, a feature should be delivered every 2-10 days –

which differs from Scrum, in which sprints typically last two, but 

sometimes four, weeks.”



How Does FDD Work?

 Typically used in large-scale development projects, five basic activities exist 

during FDD:

 Develop overall model

 Build feature list

 Plan by feature

 Design by feature

 Build by feature



FDD



 Develop an overall model:

 Domain and development team members work together under the guiding hand of an 

experienced Chief Architect. 

 Domain Members perform an initial high level walkthrough of the scope of the system and its 

context. 

 Then the domain members perform more detailed walkthroughs of each area of the problem 

domain. 

 After each walkthrough, the domain and development members work in small groups to 

produce object models for that area of the domain. 

 Each small group composes its own model in support of the domain walkthrough and presents 

its results for peer review and discussion. 

 One of the proposed models or a merge of the models is selected by consensus and becomes 

the model for that domain area. 

 The domain area model is merged into the overall model. adjusting the model shape as 

required.



 Build a features list:

 Based on the partition of the domain by the Domain Experts ,the 

team breaks the domain into a number of areas (major feature sets). 

 Each area is further broken into a number of activities (feature sets).

 Each step within an activity is identified as a feature. 

 The result is a hierarchically categorized features list.



 Plan by feature: 

 The project Manager, Development Manager, and Chief Programmers 

plan the order that the features are to be implemented, based on 

feature dependencies,load across the development team, and the 

complexity of the features to be implemented. 

 Typical style of refinement is possible here.



Design by feature:

 A number of features are scheduled for development by assigning them to a Chief 

Programmer. 

 The Chief Programmer selects features for development from his or her "inbox" of 

assigned features. 

 Chief Programmer schedules small group of features at a time for development.

 The Chief Programmer then forms a feature team by identifying the owners of the 

classes, (developers) likely to be involved in the development of the selected features.

 The Chief Programmer then refines the object model based on the content of the 

sequence diagram



 Build by feature

 Working from the design package produced during the Design by 

Feature process, the class owners implement the items necessary for 

their class to support the design for the feature(s) in the work 

package. 

 The code developed is then unit tested and code inspected, the order 

of which is determined by the Chief Programmer. After a successful 

code inspection, the code is permitted to build.



FDD



 Lean Software Development (LSD)

 Lean Software Development (LSD) is an agile framework based on optimizing

development time and resources, eliminating waste, and ultimately delivering only

what the product needs.

 The Lean approach is also often referred to as the Minimum Viable Product

(MVP)strategy, in which a team releases a bare-minimum version of its product to the

market, learns from users what they like, don’t like and want to be added, and then

iterates based on this feedback.

 Adapted from the Toyota Production System



lean manufacturing principles

 Lean development can be summarized by seven principles, very close in concept to :

 Eliminate waste

 Amplify learning

 Decide as late as possible

 Deliver as fast as possible

 Empower the team

 Build integrity in

 Optimize the whole





Agile modeling (AM)

 It is a methodology for modeling and documenting software systems.

 It is a collection of values and principles, that can be applied on an (agile) software 

development project. 

 This methodology is more flexible than traditional modeling methods, making it a better fit in a 

fast changing environment. It is part of the agile software development tool kit.

 Agile modeling is a supplement to other agile development methodologies such 

as Scrum, extreme programming (XP), and Rational Unified Process (RUP). It is explicitly 

included as part of the disciplined agile delivery(DAD) framework. 



core practices:
 There are two core practices:

 Documentation

 Document continuously. Documentation is made throughout the life-cycle, in parallel to the 

creation of the rest of the solution.

 Document late. Documentation is made as late as possible, avoiding speculative ideas that are 

likely to change in favor of stable information.

 Executable specifications. Requirements are specified in the form of executable "customer 

tests", instead of non-executable "static" documentation.

 Single-source information. Information (models, documentation, software), is stored in one 

place and one place only, to prevent questions about what the "correct" version / information is.



 Modeling

 Active stakeholder participation. Stakeholders of the solution/software being modeled should 

be actively involved with doing so. This is an extension of the on-site customer practice 

from Extreme Programming.

 Architecture envisioning. The team performs light-weight, high-level modeling that is just 

barely good enough (JBGE) at the beginning of a software project so as to explore the 

architecture strategy that the team believes will work.

 Inclusive tools. Prefer modelling tools, such as whiteboards and paper, that are easy to work 

with (they're inclusive).

 Iteration modeling. When a requirement/work item has not been sufficiently explored in detail 

via look-ahead modeling they team may choose to do that exploration during their 

iteration/sprint planning session. The need to do this is generally seen as a symptom that the 

team is not doing sufficient look-ahead modeling.



Bibliography
 ASD: 

https://www.tutorialspoint.com/adaptive_software_development/adaptive_software_developm

ent_lifecycle.htm

 DSDM

https://www.solutionsiq.com/agile-glossary/dynamic-systems-development-method-dsdm/

https://en.wikipedia.org/wiki/Dynamic_systems_development_method

 FDD

https://www.productplan.com/glossary/feature-driven-development/

http://agilemodeling.com/essays/fdd.htm#:~:text=Feature%20Driven%20Development%20(FDD)%20

and%20Agile%20Modeling&text=Feature%2DDriven%20Development%20(FDD),Programming%20(XP)%2

0calls%20customers.

https://www.tutorialspoint.com/adaptive_software_development/adaptive_software_development_lifecycle.htm
https://www.solutionsiq.com/agile-glossary/dynamic-systems-development-method-dsdm/
https://en.wikipedia.org/wiki/Dynamic_systems_development_method
https://www.productplan.com/glossary/feature-driven-development/
http://agilemodeling.com/essays/fdd.htm:~:text=Feature%20Driven%20Development%20(FDD)%20and%20Agile%20Modeling&text=Feature%2DDriven%20Development%20(FDD),Programming%20(XP)%20calls%20customers.

